Hessian estimate on Dirichlet and Neumann eigenfunctions of Laplacian

Reporter: Li-Juan Cheng

Joint work with **Anton Thalmaier**

Hangzhou Normal University . School of Mathematics

17th workshop on Markov processes and related topics November 25-27, 2022, Online

Outline

- 1. Our focus and motivation
- 2. Our work
- 3. Sketch of proofs
 - (1) Case I: no boundary
 - (2) Case II: Dirichlet boundary
 - (3) Case III: Neumann boundary
- 4. Main references

1. Our focus and motivation

1. Focus—background

Manifold:

- (D,g): n-dimensional compact Riemannian manifold with boundary ∂D .
- ▼ and Δ: the Levi-Civita covariant derivative and the Laplace-Beltrami operator w.r.t. metric g, respectively.
- $(\phi, \lambda) \in \text{Eig}(\Delta)$: ϕ is a Dirichlet eigenfunction of $-\Delta$ on D with eigenvalue $\lambda > 0$, i.e. $-\Delta \phi = \lambda \phi$, which is normalized in $L^2(D)$, i.e. $||\phi||_{L^2} = 1$.
- $(\phi, \lambda) \in \operatorname{Eig}_N(\Delta)$: ϕ is a Neumann eigenfunction of $-\Delta$ on D with eigenvalue $\lambda > 0$, i.e. $-\Delta \phi = \lambda \phi$, which is normalized in $L^2(D)$, i.e. $\|\phi\|_{L^2} = 1$.

Focus—backgroud

• The uniform estimate of ϕ ,

$$\|\phi\|_{\infty} \le c_D \lambda^{\frac{n-1}{4}}$$

for some positive constant c_D .

- Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218.
- Daniel Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1283–1299.

Focus—backgroud

• According to [Shi-Xu,2013], there exist two positive constants $c_1(D)$ and $c_2(D)$ such that

$$c_1(D)\,\sqrt{\lambda}\,\|\phi\|_{\infty} \leqslant \|\nabla\phi\|_{\infty} \leqslant c_2(D)\,\sqrt{\lambda}\,\|\phi\|_{\infty}, \quad (\phi,\lambda) \in \mathrm{Eig}(\Delta), \quad \text{(1)}$$

where we write $||\nabla \phi||_{\infty} := || |\nabla \phi||_{\infty}$ for simplicity.

- An analogous statement for Neumann eigenfunctions has been derived by [Hu, Shi and Xui, 2015].
 - Yiqian Shi and Bin Xu, Gradient estimate of a Dirichlet eigenfunction on a compact manifold with boundary, Forum Math. 25 (2013), no. 2, 229–240.
 - Jingchen Hu, Yiqian Shi, and Bin Xu, The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary, Chin. Ann. Math. Ser. B 36 (2015), no. 6, 991–1000.

Focus—backgroud

The optimal uniform bound of the gradient writes as

$$\|\nabla\phi\|_{\infty} \lesssim \lambda^{\frac{n+1}{4}},$$

which has been used to

- study gradient estimates for unit spectral projection operators;
- give a new proof of Hörmander's multiplier theorem ([Xu, 2004 PhD Thesis]).
 - Xiangjin Xu, Eigenfunction estimates on compact manifolds with boundary and Hörmander multiplier theorem, ProQuest LLC, Ann Arbor, MI, 2004, Thesis (Ph.D.)—The Johns Hopkins University.
 - Xiangjin Xu, Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier theorem, Forum Math. 21 (2009), no. 3, 455–476.

1. Motivation—Quantitative estimate of $\|\nabla \phi\|_{\infty}$

- By methods of stochastic analysis on Riemannian manifolds, **Arnaudon, Thalmaier and Wang** determined **explicit constants** $c_1(D)$ **and** $c_2(D)$ in (1) for Dirichlet and Neumann eigenfunctions.
 - Marc Arnaudon, Anton Thalmaier, and Feng-Yu Wang, Gradient estimates on Dirichlet and Neumann eigenfunctions, Int. Math. Res. Not. IMRN (2020), no. 20, 7279–7305.

Motivation—Estimate of $||\text{Hess }\phi||_{\infty}$ on the domain of \mathbb{R}^n

Steinerberger studied Laplacian eigenfunctions of $-\Delta$ with Dirichlet boundary conditions on bounded domains $\Omega \subset \mathbb{R}^n$ with smooth boundary and proved a sharp Hessian estimate for the eigenfunctions:

$$\|\operatorname{Hess}\phi\|_{\infty} \lesssim \lambda^{\frac{n+3}{4}}$$

where

$$\|\text{Hess }\phi\|_{\infty} := \sup \{ |\text{Hess }\phi(v,v)|(x) : x \in \mathbb{R}^n, \ v \in \mathbb{R}^n, \ |v| = 1 \}.$$

 Stefan Steinerberger, Hessian estimates for Laplacian eigenfunctions, arXiv:2102.02736v1 (2021).

Motivation—Main problem

Our question:

For the manifold, how to derive explicit numerical constants $c_1(D)$ and $c_2(D)$ such that

$$c_1(D)\lambda \|\phi\|_{\infty} \le \|\operatorname{Hess} \phi\|_{\infty} \le c_2(D)\lambda \|\phi\|_{\infty}, \quad (\phi, \lambda) \in \operatorname{Eig}(\Delta),$$
 (2)

In particular, what is the required curvature assumptions to estimate the constants $c_1(D)$ and $c_2(D)$.

1. Motivation—Main problem

Note that for eigenfunctions of the Laplacian, one trivially has

$$|\text{Hess }\phi| \ge \frac{1}{n} |\Delta \phi| = \frac{\lambda}{n} |\phi|,$$

and hence there is always the obvious lower bound

$$\frac{||\mathrm{Hess}\,\phi||_\infty}{||\phi||_\infty}\geq \frac{\lambda}{n}.$$

We shall concentrate in the sequel on upper bounds for

$$\frac{||\operatorname{Hess}\phi||_{\infty}}{||\phi||_{\infty}}.$$

2. Our work

2. Our work-Geometric Notations

- Hess := ∇d the Hessian operator on functions.
- Let $\operatorname{Ric}(X,Y) := \nabla^2_{X,Y} \nabla^2_{Y,X}$ be the Ricci curvature tensor w.r.t. g.
- Let R be the curvature tensor.
- Let $d^*R(v_1, v_2) := -\operatorname{tr} \nabla R(\cdot, v_1)v_2$, where

$$\langle \mathbf{d}^* R(v_1, v_2), v_3 \rangle = \langle (\nabla_{v_3} \mathrm{Ric}^{\sharp})(v_1), v_2 \rangle - \langle (\nabla_{v_2} \mathrm{Ric}^{\sharp})(v_3), v_1 \rangle$$

for all $v_1, v_2, v_3 \in T_xD$ and $x \in D$.

- Let N be the inward normal unit vector field on ∂D .
- For $X, Y \in T_x \partial D$ and $x \in \partial D$,

$$II(X, Y) = -\langle \nabla_X N, Y \rangle.$$

• For $v_1 \in T_xM$, let $R(v_1) : T_xM \otimes T_xM \to T_xM$ be given by

$$\langle R(v_1)(v_2, v_3), v_4 \rangle := \langle R(v_1, v_2)v_3, v_4 \rangle, \quad v_2, v_3, v_4 \in T_x M.$$

2. Our work-Case I: no boundary

Let

$$|\mathbf{R}|(y) := \sup \left\{ \sqrt{\sum_{i,j=1}^{n} \mathbf{R}(e_i, v, w, e_j)^2(y)} : |v| \le 1, |w| \le 1, v, w \in T_y D \right\}$$

for an orthonormal base $\{e_i\}_{i=1}^n$ of T_yD .

Theorem 1 [Ch.-Thalmaier, 2022]

Let D be an n-dimensional complete Riemannian manifold without boundary. Assume that there exist constants K_0, K_1, K_2 such that $\mathrm{Ric} \geq -K_0, \ |\mathrm{R}| \leq K_1$ and $|\mathrm{d}^*R + \nabla \mathrm{Ric}| \leq K_2$. Then

$$\frac{\|\text{Hess }\phi\|_{\infty}}{\|\phi\|_{\infty}} \leq \left(K_1 \sqrt{\frac{2}{2K_0^+ + \lambda}} + \frac{K_2}{2K_0^+ + \lambda}\right) e + (\lambda + 2K_0^+)e.$$

2. Our work—Case II: Dirichlet boundary

Theorem 2 [Ch.-Thalmaier, 2022]

Let D be an n-dimensional compact Riemannian manifold with boundary ∂D . Suppose that $\mathrm{Ric} \geq -K_0$, $|\mathbf{R}| \leq K_1$ and $|\mathbf{d}^*R + \nabla \mathrm{Ric}| \leq K_2$ on D, and that $|\mathrm{II}| \leq \sigma$ and $|\nabla_N N| \leq \beta$ on the boundary ∂D . Let $\alpha \in \mathbb{R}$ be such that

$$\frac{1}{2}\Delta\rho_{\partial D}\leq\alpha.$$

Then for non-trivial $(\phi, \lambda) \in \text{Eig}(\Delta)$,

$$\frac{\|\operatorname{Hess}\phi\|_{\infty}}{\|\phi\|_{\infty}} \leq \left(C_{\lambda}(D) \wedge \tilde{C}_{\lambda}(D)\right)\lambda,$$

2. Our work-Case II: Dirichlet boundary

where

$$\begin{split} C_{\lambda}(D) &:= \frac{\sqrt{\mathrm{e}} \max \left\{ (n-1)\sigma, \beta \right\}}{\lambda} \left(2\alpha^{+} + \sqrt{\frac{2}{\pi}} \left(\lambda + 2K_{0}^{+} \right) \right) \\ &+ \frac{\mathrm{e}}{\lambda} \left(2\alpha^{+} + \sqrt{\frac{2(\lambda + K_{0}^{+})}{\pi}} + \frac{\sqrt{\pi}(\lambda + K_{0}^{+})}{4\left(2\sqrt{\pi}\alpha^{+} + \sqrt{2(\lambda + K_{0}^{+})}\right)} \right) \left(\frac{K_{1}\sqrt{\lambda + 2K_{0}^{+}} + K_{2}/2}{\lambda + 2K_{0}^{+}} + \sqrt{\lambda + 2K_{0}^{+}} \right); \\ \tilde{C}_{\lambda}(D) &:= \frac{\mathrm{e}}{\lambda} \max \left\{ (n-1)\sigma, \beta \right\} \left(2\alpha^{+} + \sqrt{\frac{2}{\pi}} (\lambda/2 + K_{0}^{+}) \right) \\ &+ \frac{\mathrm{e}}{\lambda} \left(K_{1} + \frac{K_{2}}{2\sqrt{\lambda/2 + K_{0}^{+}}} \right) \sqrt{\left(\frac{2\alpha^{+}}{\sqrt{\lambda/2 + K_{0}^{+}}} + \sqrt{\frac{2}{\pi}} \right)^{2} + 1} \\ &+ \frac{\mathrm{e}}{\lambda} \left(2\alpha^{+}\sqrt{\lambda/2 + K_{0}^{+}} + \sqrt{\frac{2}{\pi}} (\lambda/2 + K_{0}^{+}) \right) \mathbf{1}_{\left\{ \alpha^{+} > \left(2 - \sqrt{\frac{1}{2\pi}} \right) \sqrt{\lambda/2 + K_{0}^{+}} \right\}} \\ &+ \frac{\mathrm{e}}{\lambda} \left(\left(2 + \frac{1}{4\pi} \right) (\lambda/2 + K_{0}^{+}) + \frac{(\alpha^{+})^{2}}{2} + \frac{\alpha^{+}}{2} \sqrt{\frac{2}{\pi}} (\lambda/2 + K_{0}^{+})} \right) \mathbf{1}_{\left\{ \alpha^{+} \le \left(2 - \sqrt{\frac{1}{2\pi}} \right) \sqrt{\lambda/2 + K_{0}^{+}} \right\}}. \end{split}$$

2. Our work-Case III: Neumann boundary

Theorem 3 [Ch.-Thalmaier, 2022]

Let D be an n-dimensional compact Riemannian manifold with boundary ∂D . Assume that $\mathrm{Ric} \geq -K_0$, $|\mathbf{R}| \leq K_1$ and $|\mathbf{d}^*R + \nabla \mathrm{Ric}| \leq K_2$ on D, and that $\nabla N \geq -\sigma_1$ and $|\nabla^2 N - R(N)| \leq \sigma_2$ on the boundary ∂D . For $h \in C^\infty(D)$ with $\min_D h = 1$ and $N \log h|_{\partial D} \geq 1$, let $K_{h,\alpha} := \sup_{\{-\Delta \log h + \alpha | \nabla \log h|^2\}}$ with α a positive constant. Then, for any non-trivial $(\phi,\lambda) \in \mathrm{Eig}_N(\Delta)$,

$$\frac{||\operatorname{Hess}\phi||_{\infty}}{||\phi||_{\infty}} \leq C_{N,\lambda}(D)\lambda;$$

denoting by λ_1 the first Neumann eigenvalue of $-\Delta$, then

$$\frac{||\mathrm{Hess}\phi||_{\infty}}{||\phi||_{\infty}} \leq C_{N,\lambda_1}(D) \, \lambda.$$

where

$$\begin{split} C_{N,\lambda}(D) = & e \left(1 + \frac{K_1 + 2K_0^+ + (2\sigma_1^+ + \delta)K_{h,2(\sigma_1^+ + \delta)}}{\lambda} + \frac{K_2}{\lambda \sqrt{2\lambda + 4K_0^+ + (4\sigma_1^+ + 2\delta)K_{h,2(\sigma_1^+ + \delta)}}} \right) ||h||_{\infty}^{2\sigma_1^+} \\ & + \frac{\sigma_2 e}{2(\sigma_1^+ + \delta)\lambda} ||h||_{\infty}^{2\sigma_1^+ + \delta} \sqrt{2\lambda + 4K_0^+ + (4\sigma_1^+ + 2\delta)K_{h,(2\sigma_1^+ + \delta)}} \end{split}$$

for any $\delta > 0$ ($\delta \ge 0$ if $\sigma_1^+ > 0$).

2. Our work—Construction of h

Condition (H)

There exists a non-negative constant θ such that $\Pi \leq \theta$ and a positive constant r_0 such that on $\partial_{r_0}D:=\{x\in D: \rho_\partial(x)\leq r_0\}$ the distance function ρ_∂ to the boundary ∂D is smooth and there exists some constant k such that Sect $\leq k$ on $\partial_{r_0}D$.

- Under Condition (H), we use F.-Y. Wang's construction of $\phi \in \mathcal{D}$ (see Theorem 3.2.9 in [Wang, 2007]) to construct h.
 - Feng-Yu Wang, Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds, Math. Nachr. 280 (2007), no. 12, 1431–1439.

2. Our work—Construction of h

One defines

$$\log h(x) = \frac{1}{\Lambda_0} \int_0^{\rho_{\bar{\sigma}}(x)} (\ell(s) - \ell(r_1))^{1-n} \ ds \int_{s \wedge r_1}^{r_1} (\ell(u) - \ell(r_1))^{n-1} \ du$$

where

$$\ell(t) := \begin{cases} \cos \sqrt{k}t - \frac{\theta}{\sqrt{k}} \sin \sqrt{k}t, & k > 0, \\ 1 - \theta t, & k = 0, \\ \cosh \sqrt{-k}t - \frac{\theta}{\sqrt{-k}} \sinh \sqrt{-k}t, & k < 0, \end{cases}$$
(3)

 $r_1 := r_0 \wedge \ell^{-1}(0)$ and

$$\Lambda_0 := (1 - \ell(r_1))^{1-n} \int_0^{r_1} (\ell(s) - \ell(r_1))^{n-1} ds.$$

2. Construction of h

Corollary 4 [Ch.-Thalmaier, 2022]

Let D be a compact n-dimensional Riemannian manifold with boundary ∂D . Assume that $\mathrm{Ric} \geq -K_0$, $|R| \leq K_1$ and $|\mathrm{d}^*R + \nabla \mathrm{Ric}| \leq K_2$ on D, and that $\mathrm{II} \geq -\sigma$, $|\nabla_N N| \leq \beta$ and $|\nabla^2 N - R(N)| \leq \sigma_2$ on the boundary ∂D for $\sigma, \beta, \sigma_2 \geq 0$. Assume that Condition (\mathbf{H}) is satisfied. Then, the Hessian estimate of Neumann eigenfunctions in Theorem 3 remain valid under replacing

$$\sigma_1$$
, $K_{h,\alpha}$ and $||h||_{\infty}$

by

$$\max \{\sigma, \beta/2\}, K_{\alpha} := \frac{n}{r_1} + \alpha \text{ and } e^{nr_1/2}$$

respectively.

3. Sketch of proofs

3. Notations

- Let X^x be a Brownian motion for each $x \in M$.
- For $f \in C_b(M)$, $P_t f(x) = \mathbb{E}[f(X_t^x)], \quad t \ge 0$.
- The damped parallel transport $Q_t : T_xM \to T_{X_t}M$ is defined as the solution, along the paths of X_t , to the covariant ordinary differential equation

$$DQ_t = -Ric^{\sharp} Q_t dt, \quad Q_0 = id_{T_x M}, \tag{4}$$

where $DQ_t = //_t d //_t^{-1} Q_t$ and $//_t$ being the parallel transport along the paths of X_t .

3. Idea—no boundary

If the manifold has no boundary and $Ric \ge -K_0$ for some constant $K_0 \ge 0$, then

one has the Bismut-type formula

$$\nabla P_t f(x) = \mathbb{E}\left[f(X_t(x))\int_0^t \langle Q_t(\dot{k}(s)v),//_s\,dB_s\rangle\right],$$

where $k \in C_b^1([0, \infty), \mathbb{R})$ satisfying k(0) = 1 and k(s) = 0 for $s \ge t$;

- taking $f = \phi$, and using $P_t \phi = e^{-\frac{1}{2}\lambda t} \phi$ yields the upper bound of $\|\nabla \phi\|_{\infty}$.
- For the Neumann boundary, the idea is also to use the Bismut type formula for Neumann semigroup.

3. Idea—Dirichlet boundary

Suppose the manifold D has boundary and $(\phi, \lambda) \in \text{Eig}(\Delta)$.

Step 1 For $v \in T_xM$ and any $k \in C_b^1([0,\infty);\mathbb{R})$ such that k(0) = 1 and k(s) = 0 for $s \ge T$, i.e., k bounded with bounded derivative, the process

$$k(t)e^{\lambda t/2} \langle \nabla \phi(X_t), Q_t(v) \rangle - e^{\lambda t/2} \phi(X_t) \int_0^t \langle \dot{k}(s)Q_s(v), //_s dB_s \rangle, \quad t \leq \tau_D$$

is a martingale.

3. Idea—Dirichlet boundary

Step 2 By taking expectation at time t = 0 and $t = T \wedge \tau_D$,

$$\begin{split} \langle \nabla \phi, v \rangle &= \mathbb{E} \left[k(T \wedge \tau_D) \mathrm{e}^{\lambda (T \wedge \tau_D)/2} \, \langle \nabla \phi(X_{T \wedge \tau}), Q_{T \wedge \tau}(v) \rangle \right] \\ &- \mathbb{E} \left[\phi(T \wedge \tau_D) \mathrm{e}^{\lambda (T \wedge \tau_D)/2} \, \int_0^{T \wedge \tau_D} \langle \dot{k}(s) Q_s v, //_s dB_s \rangle \right] \\ &= \mathbb{E} \left[\mathbf{1}_{\{T \geq \tau_D\}} \mathrm{e}^{\lambda \tau_D/2} \, \langle \nabla \phi(X_{\tau_D}), Q_{\tau_D}(v) \rangle \right] \\ &- \mathbb{E} \left[\phi(T \wedge \tau_D) \mathrm{e}^{\lambda (T \wedge \tau_D)/2} \, \int_0^{T \wedge \tau_D} \langle \dot{k}(s) Q_s v, //_s dB_s \rangle \right]. \end{split}$$

• Estimating $|\nabla \phi|$ on the boundary ∂D and carefully choosing the function k finish the proof.

3.1. Case I: no boundary

Operator-valued process W_t

For $w \in T_xM$ define an operator-valued process $W_t(\cdot, w) : T_xM \to T_{X_t}M$ by

$$W_t(\cdot, w) = Q_t \int_0^t Q_r^{-1} R(//r dB_r, Q_r(\cdot)) Q_r(w)$$
$$- Q_t \int_0^t Q_r^{-1} (\nabla \text{Ric}^{\sharp} + d^* R) (Q_r(\cdot), Q_r(w)) dr.$$

Then the process $W_t(\cdot, w)$ is the solution to the covariant Itô equation

$$\begin{cases} \mathrm{D}W_t(\cdot,w) = R(//_t dB_t, Q_t(\cdot))Q_t(w) - (d^*R + \nabla \mathrm{Ric}^{\sharp})(Q_t(\cdot), Q_t(w)) \, dt \\ & - \mathrm{Ric}^{\sharp}(W_t(\cdot,w)) \, dt, \\ W_0(\cdot,w) = 0. \end{cases}$$

Bismut-type Hessian formula

Theorem ([Elworthy-Li, 1998])

Assume k, ℓ are bounded adapted processes with paths in the Cameron-Martin space $L^{1,2}([0,T];[0,1])$ such that

- k(0) = 1 and k(s) = 0 for $s \ge S$;
- $\ell(s) = 1$ for $s \le S$ and $\ell(s) = 0$ for $s \ge T$.

Then for $f \in \mathcal{B}_b(M)$, we have

$$(\operatorname{Hess}_{x} P_{T} f)(v, v) = -\mathbb{E}^{x} \left[f(X_{T}) \int_{0}^{T} \langle W_{s}(\dot{k}(s)v, v), //_{s} dB_{s} \rangle \right]$$

$$+ \mathbb{E}^{x} \left[f(X_{T}) \int_{S}^{T} \langle Q_{s}(\dot{\ell}(s)v), //_{s} dB_{s} \rangle \int_{0}^{S} \langle Q_{s}(\dot{k}(s)v), //_{s} dB_{s} \rangle \right].$$
 (5)

 K. David Elworthy and Xue-Mei Li, Bismut type formulae for differential forms, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 1, 87-92.

Bismut-type Hessian formula-history

- Localization of Elworthy-Li's formula by [Arnaudon-Plank-Thalmaier, 2003].
- The study of the Hessian of a Feynman-Kac semigroup has been pushed forward by [Li, 2016],[Li, 2018] and [Thompson, 2019].
- An intrinsic formula for $\operatorname{Hess} P_t f$ with only one test function has been given in [Stroock, 1996] for a compact Riemannian manifold by the path theory.
- Martingale method is used to extend the intrinsic formula of ${\rm Hess}P_tf$ by [Chen-Ch. -Thalmaier,2021].

2. Our work—Case: Manifold without boundary

Theorem 4 [Chen-Ch.-Thalmaier, 2021]

Let D be a compact and complete manifold without boundary. For $k \in C_b^1([0,\infty); \mathbb{R})$ with k(0) = 1 and k(t) = 0 for $t \geq T$, one has for $v \in T_xM$,

$$(\operatorname{Hess} P_{T}f)(v,v) = -\mathbb{E}^{x} \left[f(X_{T}) \int_{0}^{T} \langle W_{s}^{k}(\dot{k}(s)v,v), //_{s} dB_{s} \rangle \right]$$

$$+ \mathbb{E} \left[f(X_{T}(x)) \left(\left(\int_{0}^{T} \langle Q_{s}(\dot{k}(s)v), //_{s} dB_{s} \rangle \right)^{2} - \int_{0}^{T} |Q_{s}(\dot{k}(s)v)|^{2} ds \right) \right], \quad (6)$$

where

$$W_{t}^{k}(w,v) = Q_{t} \int_{0}^{t} Q_{r}^{-1} R(//r dB_{r}, Q_{r}(w)) Q_{r}(k(r)v)$$

$$- Q_{t} \int_{0}^{t} Q_{r}^{-1} (\nabla \operatorname{Ric}^{\sharp} + d^{*}R) (Q_{r}(w), Q_{r}(k(r)v)) dr.$$

2. Our work—Case: Manifold without boundary

• If the manifold D has no boundary, then an appropriate estimate of $\mathbb{E} \int_0^t |W_t^k(v,v)|^2 \, \mathrm{d}t$ (see [Chen-Ch.-Thalmaier, 2021]) yields

$$\|\text{Hess}P_t f\|_{\infty} \le \left(K_1 \sqrt{t} + \frac{K_2 t}{2}\right) e^{K_0^+ t} \|f\|_{\infty} + \frac{2}{t} e^{K_0^+ t} \|f\|_{\infty}.$$

• If $f = \phi$ and $(\phi, \lambda) \in \text{Eig}(\Delta)$, then

$$\|\text{Hess }\phi\|_{\infty} \le \left(K_1 \sqrt{t} + \frac{K_2 t}{2}\right) e^{(K_0^+ + \lambda/2)t} \|\phi\|_{\infty} + \frac{2e^{(K_0^+ + \lambda/2)t}}{t} \|\phi\|_{\infty}$$

for any t > 0. Letting $t = \frac{1}{K_0^+ + \lambda/2}$ then yields the estimate in Theorem 1.

3.2. Case II: Dirichlet boundary

Two Methods

Method 1:

- construct a martingale to connect $\operatorname{Hess}\phi$ and $\nabla \phi$;
- via estimating the boundary value of $\|\text{Hess }\phi\|_{\partial D,\infty}$ to give the estimate

$$||\text{Hess }\phi||_{\infty} \leq (\cdots)||\nabla\phi||_{\infty} \qquad \qquad \leq \qquad (\cdots)||\phi||_{\infty}.$$

Method 2:

- construct a martingale to connect Hess ϕ and ϕ ;
- via estimating the boundary value of $\|\operatorname{Hess}\phi\|_{\partial D,\infty}$ and $\|\nabla\phi\|_{\partial D,\infty}$ to give the estimate

$$||\text{Hess }\phi||_{\infty} \leq (\cdots)||\phi||_{\infty}.$$

First type of martingale

The process

$$M_{t} := e^{\lambda t/2} \operatorname{Hess} \phi(Q_{t}(k(t)v), Q_{t}(v)) + e^{\lambda t/2} \mathbf{d}\phi(W_{t}^{k}(v, v))$$
$$- e^{\lambda t/2} \mathbf{d}\phi(Q_{t}(v)) \int_{0}^{t} \langle Q_{s}(\dot{k}(s)v), //_{s} dB_{s} \rangle$$
(7)

is a martingale on $[0, \tau_D]$ in the sense that $(M_{t \wedge \tau_D})_{t \geq 0}$ is a globally defined martingale where $\tau_D = \inf\{t > 0 : X_t(x) \in \partial D\}$ denotes the first hitting time of $X_t(x)$ of the boundary ∂D_t .

$$\|\operatorname{Hess} \phi\|_{\infty} \le C_1 \|\operatorname{Hess} \phi\|_{\partial D, \infty} + C_2 \|\nabla \phi\|_{\infty}. \tag{8}$$

Second type of martingale

The process

$$N_{t} := e^{\lambda t/2} \operatorname{Hess} \phi(Q_{t}(k(t)v), Q_{t}(k(t)v)) + e^{\lambda t/2} \mathbf{d} \phi(W_{t}^{k}(v, k(t)v))$$

$$- 2e^{\lambda t/2} \mathbf{d} \phi(Q_{t}(k(t)v)) \int_{0}^{t} \langle Q_{s}(\dot{k}(s)v), //_{s} dB_{s} \rangle$$

$$- e^{\lambda t/2} \phi(X_{t}) \int_{0}^{t} \langle W_{s}^{k}(v, \dot{k}(s)v), //_{s} dB_{s} \rangle$$

$$+ e^{\lambda t/2} \phi(X_{t}) \left(\left(\int_{0}^{t} \langle Q_{s}(\dot{k}(s)v), //_{s} dB_{s} \rangle \right)^{2} - \int_{0}^{t} |Q_{s}(\dot{k}(s)v)|^{2} ds \right)$$
(9)

is a martingale on $[0, \tau_D]$.

$$\|\operatorname{Hess} \phi\|_{\infty} \le C_1 \|\operatorname{Hess} \phi\|_{\partial D, \infty} + C_2 \|\nabla \phi\|_{\partial D, \infty} + C_3 \|\phi\|_{\infty}. \tag{10}$$

Hessian estimate of the boundary value of Hess ϕ

Lemma 1

Assume $|II| \le \sigma$ and $|\nabla_N N| \le \beta$ on the boundary ∂D . Then for $x \in \partial D$,

$$\|\operatorname{Hess}(\phi)\|_{\partial D,\infty} \le \max\{(n-1)\sigma,\beta\} \|\nabla \phi\|_{\partial D,\infty}.$$

3.2. Case III: Neumann boundary

Two operator-valued processes

• Suppose that $\tilde{Q}_t \colon T_xD \to T_{X_t(x)}D$ satisfies

$$\mathsf{D}\tilde{Q}_t = -\frac{1}{2}\mathsf{Ric}^{\sharp}(\tilde{Q}_t)\,dt + \frac{1}{2}(\nabla N)^{\sharp}(\tilde{Q}_t)\,dl_t, \quad \tilde{Q}_0 = \mathrm{id}.$$

• For $k \in C_b^1([0,\infty);\mathbb{R})$ define an operator-valued process $\tilde{W}_t^k : T_x D \otimes T_x D \to T_{X_t(x)} D$ as solution to the covariant Itô equation

$$\begin{split} \mathsf{D}\tilde{W}_t^k(v,w) &= R(//_t\,dB_t,\tilde{Q}_t(k(t)v))\tilde{Q}_t(w) \\ &- \frac{1}{2}(\mathbf{d}^*R + \nabla\mathrm{Ric})^\sharp(\tilde{Q}_t(k(t)v),\tilde{Q}_t(w))\,dt \\ &- \frac{1}{2}(\nabla^2N - R(N))^\sharp(\tilde{Q}_t(k(t)v),\tilde{Q}_t(w))\,dl_t \\ &- \frac{1}{2}\mathrm{Ric}^\sharp(\tilde{W}_t^k(v,w))\,dt + \frac{1}{2}(\nabla N)^\sharp(\tilde{W}_t^k(v,w))\,dl_t, \end{split}$$

with initial condition $\tilde{W}_0^k(v, w) = 0$.

Remarks on $ilde{Q}_t$ and $ilde{W}_t$

• In the derivative formula for $\nabla P_t f$, the multiplicative functional Q_t satisfies

$$\langle N(X_t), Q_t(v) \rangle 1_{\{X_t \in \partial M\}} = 0$$

which is reasonable since

$$\langle \nabla P_{T-t} f(X_t), N(X_t) \rangle 1_{\{X_t \in \partial M\}} = 0.$$

It follows that information on the second fundamental form

$$II^{\sharp}(P_{\partial}(v)) = -(\nabla_{P_{\partial}(v)}N)^{\sharp}$$

is sufficient.

 However, when it comes to the second order derivative of P_tf on the boundary, no condition like

$$\operatorname{Hess}_{P_{T-t}f}(N(X_t),\cdot)1_{\{X_t\in\partial M\}}=0$$

is satisfied, which naturally demands for full information on ∇N .

Bismut Hessian formula for Neumann semigroup

Theorem 5 [Ch.-Thalmaier-Wang, 2022]

Let D be a compact Riemannian manifold with boundary ∂D . Let X(x) be the reflecting Brownian motion on D with starting point x (possibly on the boundary) and denote by $P_t f(x) = \mathbb{E}[f(X_t(x))]$ the corresponding Neumann semigroup acting on $f \in \mathcal{B}_b(D)$. Then, for $v \in T_xD$, $t \ge 0$ and $k \in C_b^1([0,\infty);\mathbb{R})$,

$$\begin{split} (\mathrm{Hess} P_t f)(v,v)(x) &= -\mathbb{E}\left[f(X_t(x))\int_0^t \langle \tilde{W}_s^k(v,\dot{k}(s)v),//_s\,dB_s\rangle\right] \\ &+ \mathbb{E}\left[f(X_t(x))\left(\left(\int_0^t \langle \tilde{Q}_s(\dot{k}(s)v),//_sdB_s\rangle\right)^2 - \int_0^t |\tilde{Q}_s(\dot{k}(s)v)|^2\,ds\right)\right]. \end{split}$$

Hessian estimate for Neumann semigroup

Corollary 6 [Ch.-Thalmaier-Wang, 2022]

We keep the assumptions of Theorem 5. Assume that $\operatorname{Ric} \geq -K_0$, $|R| \leq K_1$ and $|\mathbf{d}^*R + \nabla \operatorname{Ric}| \leq K_2$ on D, and $-\nabla N \geq -\sigma_1$, $|\nabla^2 N + R(N)| < \sigma_2$ on the boundary ∂D . Then, for $(\phi, \lambda) \in \operatorname{Eig}_N(D)$,

$$\begin{split} \| \operatorname{Hess} \phi \|_{\infty} & \leq \mathrm{e}^{(\frac{1}{2}\lambda + K_0^+)t} \left(K_1 + \frac{2}{t} + \frac{K_2 \sqrt{t}}{2} \right) \mathbb{E}[\mathrm{e}^{\sigma_1 l_t}] \| \phi \|_{\infty} \\ & + \frac{\sigma_2}{2 \sqrt{t}} \mathrm{e}^{(\frac{1}{2}\lambda + K_0^+)t} \mathbb{E}\left[\mathrm{e}^{\sigma_1 l_t} \right]^{1/2} \left(\mathbb{E}\left[\int_0^t \mathrm{e}^{\frac{1}{2}\sigma_1 l_s} \, dl_s \right]^2 \right)^{1/2} \| \phi \|_{\infty}. \end{split}$$

Estimate of the local time

Lemma 7

Suppose that $h \in C^{\infty}(D)$ such that $h \ge 1$ and $N \log h \ge 1$. For $\alpha > 0$ let

$$K_{h,\alpha} = \sup\{-\Delta \log h + \alpha |\nabla \log h|^2\}.$$

Then

$$\mathbb{E}[e^{\alpha l_t/2}] \leq ||h||_{\infty}^{\alpha} \exp\left(\frac{\alpha}{2} K_{h,\alpha} t\right).$$

1. Main references

- Qing-Qian Chen, Li-Juan Cheng, and Anton Thalmaier, Bismut-Stroock Hessian formulas and local Hessian estimates for heat semigroups and harmonic functions on Riemannian manifolds, Stoch PDE: Anal Comp (2021), 21 pp.
- Marc Arnaudon, Anton Thalmaier, and Feng-Yu Wang, *Gradient estimates* on *Dirichlet and Neumann eigenfunctions*, Int. Math. Res. Not. IMRN (2020), no. 20, 7279–7305.
- Li-Juan Cheng, Anton Thalmaier, and Feng-Yu Wang, Hessian formula for Neumann semigroup on manifolds with boundary and its applications, Preprint (2022).
- Stefan Steinerberger, Hessian estimates for Laplacian eigenfunctions, arXiv:2102.02736v1 (2021).

Thank you!