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1. Our focus and motivation
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1. Focus—background

Manifold:

(D, g): n-dimensional compact Riemannian manifold with boundary ∂D.

∇ and ∆: the Levi-Civita covariant derivative and the Laplace-Beltrami
operator w.r.t. metric g, respectively.

(ϕ, λ) ∈ Eig(∆): ϕ is a Dirichlet eigenfunction of −∆ on D with
eigenvalue λ > 0, i.e. −∆ϕ = λϕ, which is normalized in L2(D), i.e.
∥ϕ∥L2 = 1.
(ϕ, λ) ∈ EigN(∆): ϕ is a Neumann eigenfunction of −∆ on D with
eigenvalue λ > 0, i.e. −∆ϕ = λϕ, which is normalized in L2(D), i.e.
∥ϕ∥L2 = 1.
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Focus— backgroud

The uniform estimate of ϕ,

∥ϕ∥∞ ≤ cDλ
n−1

4

for some positive constant cD.

Lars Hörmander, The spectral function of an elliptic operator, Acta
Math. 121 (1968), 193–218.
Daniel Grieser, Uniform bounds for eigenfunctions of the Laplacian on
manifolds with boundary, Comm. Partial Differential Equations 27
(2002), no. 7-8, 1283–1299.
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Focus— backgroud

According to [Shi-Xu,2013], there exist two positive constants c1(D)
and c2(D) such that

c1(D)
√
λ ∥ϕ∥∞ ⩽ ∥∇ϕ∥∞ ⩽ c2(D)

√
λ ∥ϕ∥∞, (ϕ, λ) ∈ Eig(∆), (1)

where we write ∥∇ϕ∥∞ := ∥ |∇ϕ| ∥∞ for simplicity.

An analogous statement for Neumann eigenfunctions has been
derived by [Hu, Shi and Xui, 2015].

Yiqian Shi and Bin Xu, Gradient estimate of a Dirichlet eigenfunction
on a compact manifold with boundary, Forum Math. 25 (2013), no. 2,
229–240.
Jingchen Hu, Yiqian Shi, and Bin Xu, The gradient estimate of a
Neumann eigenfunction on a compact manifold with boundary, Chin.
Ann. Math. Ser. B 36 (2015), no. 6, 991–1000.
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Focus— backgroud

The optimal uniform bound of the gradient writes as

∥∇ϕ∥∞ ≲ λ
n+1

4 ,

which has been used to

study gradient estimates for unit spectral projection operators;
give a new proof of Hörmander’s multiplier theorem ([Xu, 2004 PhD
Thesis]).

Xiangjin Xu, Eigenfunction estimates on compact manifolds with
boundary and Hörmander multiplier theorem, ProQuest LLC, Ann Arbor,
MI, 2004, Thesis (Ph.D.)–The Johns Hopkins University.
Xiangjin Xu, Gradient estimates for the eigenfunctions on compact
manifolds with boundary and Hörmander multiplier theorem, Forum
Math. 21 (2009), no. 3, 455–476.
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1. Motivation–Quantitative estimate of ∥∇ϕ∥∞

By methods of stochastic analysis on Riemannian manifolds,
Arnaudon, Thalmaier and Wang determined explicit constants
c1(D) and c2(D) in (1) for Dirichlet and Neumann eigenfunctions.

Marc Arnaudon, Anton Thalmaier, and Feng-Yu Wang, Gradient
estimates on Dirichlet and Neumann eigenfunctions, Int. Math. Res.
Not. IMRN (2020), no. 20, 7279–7305.
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Motivation—Estimate of ∥Hess ϕ∥∞ on the domain of Rn

Steinerberger studied Laplacian eigenfunctions of −∆ with Dirichlet
boundary conditions on bounded domains Ω ⊂ Rn with smooth boundary
and proved a sharp Hessian estimate for the eigenfunctions:

∥Hess ϕ∥∞ ≲ λ
n+3

4

where

∥Hess ϕ∥∞ := sup
{
|Hess ϕ(3, 3)|(x) : x ∈ Rn, 3 ∈ Rn, |3| = 1

}
.

Stefan Steinerberger, Hessian estimates for Laplacian eigenfunctions,
arXiv:2102.02736v1 (2021).
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Motivation—Main problem

Our question:
For the manifold, how to derive explicit numerical constants c1(D) and
c2(D) such that

c1(D)λ ∥ϕ∥∞ ⩽ ∥Hess ϕ∥∞ ⩽ c2(D)λ ∥ϕ∥∞, (ϕ, λ) ∈ Eig(∆), (2)

In particular, what is the required curvature assumptions to estimate the
constants c1(D) and c2(D).
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1. Motivation–Main problem

Note that for eigenfunctions of the Laplacian, one trivially has

|Hess ϕ| ≥
1
n
|∆ϕ| =

λ

n
|ϕ|,

and hence there is always the obvious lower bound

∥Hess ϕ∥∞
∥ϕ∥∞

≥
λ

n
.

We shall concentrate in the sequel on upper bounds for

∥Hess ϕ∥∞
∥ϕ∥∞

.
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2. Our work
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2. Our work–Geometric Notations

Hess := ∇d the Hessian operator on functions.

Let Ric(X,Y) := ∇2
X,Y − ∇

2
Y ,X be the Ricci curvature tensor w.r.t. g.

Let R be the curvature tensor.

Let d∗R(31, 32) := −tr∇.R(·, 31)32, where

⟨d∗R(31, 32), 33⟩ = ⟨(∇33Ric♯)(31), 32⟩ − ⟨(∇32Ric♯)(33), 31⟩

for all 31, 32, 33 ∈ TxD and x ∈ D.

Let N be the inward normal unit vector field on ∂D.

For X,Y ∈ Tx∂D and x ∈ ∂D,

II(X,Y) = −⟨∇XN, Y⟩.

For 31 ∈ TxM, let R(31) : TxM ⊗ TxM → TxM be given by

⟨R(31)(32, 33), 34⟩ := ⟨R(31, 32)33, 34⟩, 32, 33, 34 ∈ TxM.
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2. Our work–Case I: no boundary

Let

|R|(y) := sup


√√√ n∑

i,j=1

R(ei, 3,4, ej)2(y) : |3| ≤ 1, |4| ≤ 1, 3,4 ∈ TyD


for an orthonormal base {ei}

n
i=1 of TyD.

Theorem 1 [Ch.-Thalmaier, 2022]
Let D be an n-dimensional complete Riemannian manifold without boundary.
Assume that there exist constants K0,K1,K2 such that Ric ≥ −K0, |R| ≤ K1

and |d∗R + ∇Ric| ≤ K2. Then

∥Hess ϕ∥∞
∥ϕ∥∞

≤

K1

√
2

2K+0 + λ
+

K2

2K+0 + λ

 e + (λ + 2K+0 )e.
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2. Our work–Case II: Dirichlet boundary

Theorem 2 [Ch.-Thalmaier, 2022]
Let D be an n-dimensional compact Riemannian manifold with boundary ∂D.
Suppose that Ric ≥ −K0, |R| ≤ K1 and |d∗R + ∇Ric| ≤ K2 on D, and that
|II| ≤ σ and |∇NN | ≤ β on the boundary ∂D. Let α ∈ R be such that

1
2
∆ρ∂D ≤ α.

Then for non-trivial (ϕ, λ) ∈ Eig(∆),

∥Hess ϕ∥∞
∥ϕ∥∞

≤
(
Cλ(D) ∧ C̃λ(D)

)
λ,
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2. Our work–Case II: Dirichlet boundary

where

Cλ(D) :=
√

e max {(n − 1)σ, β}
λ

2α+ + √
2
π

(λ + 2K+0 )


+

e
λ

2α+ +
√

2(λ + K+0 )
π

+

√
π(λ + K+0 )

4
(
2
√
πα+ +

√
2(λ + K+0 )

)



K1

√
λ + 2K+0 + K2/2

λ + 2K+0
+

√
λ + 2K+0

 ;

C̃λ(D) :=
e
λ

max {(n − 1)σ, β}

2α+ + √
2
π

(λ/2 + K+0 )


+

e
λ

K1 +
K2

2
√
λ/2 + K+0


√√√√√√√√ 2α+√

λ/2 + K+0
+

√
2
π


2

+ 1

+
e
λ

2α+√
λ/2 + K+0 +

√
2
π

(λ/2 + K+0 )

 1{
α+>

(
2−
√

1
2π

)√
λ/2+K+0

}
+

e
λ

(2 + 1
4π

)
(λ/2 + K+0 ) +

(α+)2

2
+
α+

2

√
2
π

(λ/2 + K+0 )

 1{
α+≤

(
2−
√

1
2π

)√
λ/2+K+0

}.
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2. Our work–Case III: Neumann boundary

Theorem 3 [Ch.-Thalmaier, 2022]
Let D be an n-dimensional compact Riemannian manifold with boundary ∂D. Assume that

Ric ≥ −K0, |R| ≤ K1 and |d∗R + ∇Ric| ≤ K2 on D, and that ∇N ≥ −σ1 and |∇2N − R(N)| ≤ σ2

on the boundary ∂D. For h ∈ C∞(D) with minD h = 1 and N log h|∂D ≥ 1, let

Kh,α := supD{−∆ log h + α|∇ log h|2} with α a positive constant. Then, for any non-trivial

(ϕ, λ) ∈ EigN(∆),

∥Hess ϕ∥∞
∥ϕ∥∞

≤ CN,λ(D)λ;

denoting by λ1 the first Neumann eigenvalue of −∆, then

∥Hessϕ∥∞
∥ϕ∥∞

≤ CN,λ1 (D) λ.
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where

CN,λ(D) =e

1 + K1 + 2K+0 + (2σ+1 + δ)Kh,2(σ+1 +δ)

λ
+

K2

λ
√

2λ + 4K+0 + (4σ+1 + 2δ)Kh,2(σ+1 +δ)

 ∥h∥2σ+1∞
+

σ2e
2(σ+1 + δ)λ

∥h∥
2σ+1 +δ
∞

√
2λ + 4K+0 + (4σ+1 + 2δ)Kh,(2σ+1 +δ)

for any δ > 0 (δ ≥ 0 if σ+1 > 0).
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2. Our work–Construction of h

Condition (H)
There exists a non-negative constant θ such that II ≤ θ and a positive
constant r0 such that on ∂r0 D := {x ∈ D : ρ∂(x) ≤ r0} the distance function ρ∂ to
the boundary ∂D is smooth and there exists some constant k such that
Sect ≤ k on ∂r0 D.

Under Condition (H), we use F.-Y. Wang’s construction of ϕ ∈ D (see
Theorem 3.2.9 in [Wang, 2007]) to construct h.

Feng-Yu Wang,Estimates of the first Neumann eigenvalue and the
log-Sobolev constant on non-convex manifolds, Math. Nachr. 280
(2007), no. 12, 1431–1439.
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2. Our work–Construction of h

One defines

log h(x) =
1
Λ0

∫ ρ∂(x)

0
(ℓ(s) − ℓ(r1))1−n ds

∫ r1

s∧r1

(ℓ(u) − ℓ(r1))n−1 du

where

ℓ(t) :=


cos
√

kt − θ√
k

sin
√

kt, k > 0,
1 − θt, k = 0,
cosh

√
−kt − θ√

−k
sinh

√
−kt, k < 0,

(3)

r1 := r0 ∧ ℓ
−1(0) and

Λ0 := (1 − ℓ(r1))1−n
∫ r1

0
(ℓ(s) − ℓ(r1))n−1 ds.
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2. Construction of h

Corollary 4 [Ch.-Thalmaier, 2022]
Let D be a compact n-dimensional Riemannian manifold with boundary ∂D.
Assume that Ric ≥ −K0, |R| ≤ K1 and |d∗R + ∇Ric| ≤ K2 on D, and that
II ≥ −σ, |∇NN | ≤ β and |∇2N − R(N)| ≤ σ2 on the boundary ∂D for σ, β, σ2 ≥ 0.
Assume that Condition (H) is satisfied. Then, the Hessian estimate of
Neumann eigenfunctions in Theorem 3 remain valid under replacing

σ1, Kh,α and ∥h∥∞

by
max {σ, β/2} , Kα :=

n
r1
+ α and enr1/2

respectively.
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3. Sketch of proofs
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3. Notations

Let Xx
· be a Brownian motion for each x ∈ M.

For f ∈ Cb(M), Ptf (x) = E[f (Xx
t )], t ≥ 0.

The damped parallel transport Qt : TxM → TXt M is defined as the
solution, along the paths of Xt, to the covariant ordinary differential
equation

DQt = −Ric♯Qt dt, Q0 = idTxM, (4)

where DQt = //t d //−1
t Qt and //t being the parallel transport along the

paths of Xt.
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3. Idea–no boundary

If the manifold has no boundary and Ric ≥ −K0 for some constant K0 ≥ 0,
then

one has the Bismut-type formula

∇Ptf (x) = E
[
f (Xt(x))

∫ t

0
⟨Qt(k̇(s)3), //s dBs⟩

]
,

where k ∈ C1
b([0,∞),R) satisfying k(0) = 1 and k(s) = 0 for s ≥ t;

taking f = ϕ, and using Ptϕ = e−
1
2λtϕ yields the upper bound of ∥∇ϕ∥∞.

For the Neumann boundary, the idea is also to use the Bismut type
formula for Neumann semigroup.
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3. Idea–Dirichlet boundary

Suppose the manifold D has boundary and (ϕ, λ) ∈ Eig(∆).

Step 1 For 3 ∈ TxM and any k ∈ C1
b([0,∞);R) such that k(0) = 1 and k(s) = 0

for s ≥ T, i.e., k bounded with bounded derivative, the process

k(t)eλt/2 ⟨∇ϕ(Xt),Qt(3)⟩ − eλt/2ϕ(Xt)
∫ t

0
⟨k̇(s)Qs(3), //sdBs⟩, t ≤ τD

is a martingale.
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3. Idea–Dirichlet boundary

Step 2 By taking expectation at time t = 0 and t = T ∧ τD,

⟨∇ϕ, 3⟩ = E
[
k(T ∧ τD)eλ(T∧τD)/2 ⟨∇ϕ(XT∧τ),QT∧τ(3)⟩

]
− E

[
ϕ(T ∧ τD)eλ(T∧τD)/2

∫ T∧τD

0
⟨k̇(s)Qs3, //sdBs⟩

]
= E

[
1{T≥τD}e

λτD/2 ⟨∇ϕ(XτD ),QτD (3)⟩
]

− E

[
ϕ(T ∧ τD)eλ(T∧τD)/2

∫ T∧τD

0
⟨k̇(s)Qs3, //sdBs⟩

]
.

Estimating |∇ϕ| on the boundary ∂D and carefully choosing the
function k finish the proof.
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3.1. Case I: no boundary

L.-J. Cheng (Hangzhou Normal University) Hessian estimates of eigenfunctions 27 / 45



Operator-valued process Wt

For 4 ∈ TxM define an operator-valued process Wt(·,4) : TxM → TXt M by

Wt(·,4) = Qt

∫ t

0
Q−1

r R(//r dBr,Qr(·))Qr(4)

− Qt

∫ t

0
Q−1

r (∇Ric♯ + d∗R)(Qr(·),Qr(4)) dr.

Then the process Wt(·,4) is the solution to the covariant Itô equation
DWt(·,4) = R(//tdBt,Qt(·))Qt(4) − (d∗R + ∇Ric♯)(Qt(·),Qt(4)) dt

− Ric♯(Wt(·,4)) dt,

W0(·,4) = 0.
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Bismut-type Hessian formula

Theorem ([Elworthy-Li, 1998])
Assume k, ℓ are bounded adapted processes with paths in the
Cameron-Martin space L1,2([0,T]; [0, 1]) such that

k(0) = 1 and k(s) = 0 for s ≥ S;

ℓ(s) = 1 for s ≤ S and ℓ(s) = 0 for s ≥ T.

Then for f ∈ Bb(M), we have

(HessxPT f )(3, 3) = −Ex
[
f (XT )

∫ T

0
⟨Ws(k̇(s)3, 3), //sdBs⟩

]
+ Ex

[
f (XT )

∫ T

S
⟨Qs(ℓ̇(s)3), //sdBs⟩

∫ S

0
⟨Qs(k̇(s)3), //sdBs⟩

]
. (5)

K. David Elworthy and Xue-Mei Li, Bismut type formulae for differential forms, C. R.

Acad. Sci. Paris Sér. I Math. 327 (1998), no. 1, 87-92.
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Bismut-type Hessian formula–history

Localization of Elworthy-Li’s formula by [Arnaudon-Plank-Thalmaier, 2003].

The study of the Hessian of a Feynman-Kac semigroup has been pushed forward by

[Li, 2016],[Li, 2018] and [Thompson, 2019].

An intrinsic formula for HessPtf with only one test function has been given in

[Stroock, 1996] for a compact Riemannian manifold by the path theory.

Martingale method is used to extend the intrinsic formula of HessPtf by [Chen-Ch.

-Thalmaier,2021].
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2. Our work–Case: Manifold without boundary

Theorem 4 [Chen-Ch.-Thalmaier, 2021]
Let D be a compact and complete manifold without boundary. For
k ∈ C1

b([0,∞);R) with k(0) = 1 and k(t) = 0 for t ≥ T, one has for 3 ∈ TxM,

(Hess PT f )(3, 3) = −Ex
[
f (XT )

∫ T

0
⟨Wk

s (k̇(s)3, 3), //sdBs⟩

]
+ E

f (XT (x))

(∫ T

0
⟨Qs(k̇(s)3), //sdBs⟩

)2

−

∫ T

0
|Qs(k̇(s)3)|2 ds

 , (6)

where

Wk
t (4, 3) = Qt

∫ t

0
Q−1

r R(//r dBr,Qr(4))Qr(k(r)3)

− Qt

∫ t

0
Q−1

r (∇Ric♯ + d∗R)(Qr(4),Qr(k(r)3)) dr.
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2. Our work–Case: Manifold without boundary

If the manifold D has no boundary, then an appropriate estimate of
E

∫ t
0 |W

k
t (3, 3)|2 dt (see [Chen-Ch.-Thalmaier, 2021] ) yields

∥HessPtf ∥∞ ≤
(
K1
√

t +
K2t
2

)
eK+0 t ∥f ∥∞ +

2
t

eK+0 t ∥f ∥∞.

If f = ϕ and (ϕ, λ) ∈ Eig(∆), then

∥Hess ϕ∥∞ ≤
(
K1
√

t +
K2t
2

)
e(K+0 +λ/2)t∥ϕ∥∞ +

2e(K+0 +λ/2)t

t
∥ϕ∥∞

for any t > 0. Letting t = 1
K+0 +λ/2

then yields the estimate in Theorem 1.
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3.2. Case II: Dirichlet boundary
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Two Methods

Method 1:
construct a martingale to connect Hessϕ and ∇ϕ;
via estimating the boundary value of ∥Hess ϕ∥∂D,∞ to give the estimate

∥Hess ϕ∥∞ ≤ (· · · )∥∇ϕ∥∞
Arnaudon-Thalmaier-Wang’s result

≤ (· · · )∥ϕ∥∞.

Method 2:
construct a martingale to connect Hess ϕ and ϕ;
via estimating the boundary value of ∥Hess ϕ∥∂D,∞ and ∥∇ ϕ∥∂D,∞ to give
the estimate

∥Hess ϕ∥∞ ≤ (· · · )∥ϕ∥∞.
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First type of martingale

The process

Mt := eλt/2Hess ϕ
(
Qt(k(t)3),Qt(3)

)
+ eλt/2dϕ(Wk

t (3, 3))

− eλt/2dϕ(Qt(3))
∫ t

0
⟨Qs(k̇(s)3), //sdBs⟩ (7)

is a martingale on [0, τD] in the sense that (Mt∧τD )t≥0 is a globally defined
martingale where τD = inf{t > 0 : Xt(x) ∈ ∂D} denotes the first hitting time of
X.(x) of the boundary ∂D.

∥Hess ϕ∥∞ ≤ C1∥Hess ϕ∥∂D,∞ + C2∥∇ ϕ∥∞. (8)
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Second type of martingale

The process

Nt :=eλt/2Hessϕ
(
Qt(k(t)3),Qt(k(t)3)

)
+ eλt/2dϕ(Wk

t (3, k(t)3))

− 2eλt/2dϕ(Qt(k(t)3))
∫ t

0
⟨Qs(k̇(s)3), //sdBs⟩

− eλt/2ϕ(Xt)
∫ t

0
⟨Wk

s (3, k̇(s)3), //sdBs⟩

+ eλt/2ϕ(Xt)

(∫ t

0
⟨Qs(k̇(s)3), //sdBs⟩

)2

−

∫ t

0
|Qs(k̇(s)3)|2 ds

 (9)

is a martingale on [0, τD].

∥Hess ϕ∥∞ ≤ C1∥Hess ϕ∥∂D,∞ + C2∥∇ ϕ∥∂D,∞ + C3∥ϕ∥∞. (10)
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Hessian estimate of the boundary value of Hess ϕ

Lemma 1
Assume |II| ≤ σ and |∇NN | ≤ β on the boundary ∂D. Then for x ∈ ∂D,

∥Hess(ϕ)∥∂D,∞ ≤ max {(n − 1)σ, β} ∥∇ϕ∥∂D,∞.
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3.2. Case III: Neumann boundary
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Two operator-valued processes

Suppose that Q̃t : TxD→ TXt(x)D satisfies

DQ̃t = −
1
2

Ric♯(Q̃t) dt +
1
2

(∇N)♯(Q̃t) dlt, Q̃0 = id.

For k ∈ C1
b([0,∞);R) define an operator-valued process

W̃k
t : TxD ⊗ TxD→ TXt(x)D as solution to the covariant Itô equation

DW̃k
t (3,4) = R(//t dBt, Q̃t(k(t)3))Q̃t(4)

−
1
2

(d∗R + ∇Ric)♯(Q̃t(k(t)3), Q̃t(4)) dt

−
1
2

(∇2N − R(N))♯(Q̃t(k(t)3), Q̃t(4)) dlt

−
1
2

Ric♯(W̃k
t (3,4)) dt +

1
2

(∇N)♯(W̃k
t (3,4)) dlt,

with initial condition W̃k
0(3,4) = 0.
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Remarks on Q̃t and W̃t

In the derivative formula for ∇Ptf , the multiplicative functional Qt

satisfies
⟨N(Xt),Qt(3)⟩1{Xt∈∂M} = 0

which is reasonable since

⟨∇PT−tf (Xt), N(Xt)⟩1{Xt∈∂M} = 0.

It follows that information on the second fundamental form

II♯(P∂(3)) = −(∇P∂(3)N)♯

is sufficient.
However, when it comes to the second order derivative of Ptf on the
boundary, no condition like

HessPT−tf (N(Xt), ·)1{Xt∈∂M} = 0

is satisfied, which naturally demands for full information on ∇N.
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Bismut Hessian formula for Neumann semigroup

Theorem 5 [Ch.-Thalmaier-Wang, 2022]
Let D be a compact Riemannian manifold with boundary ∂D. Let X(x) be
the reflecting Brownian motion on D with starting point x (possibly on the
boundary) and denote by Ptf (x) = E[f (Xt(x)] the corresponding Neumann
semigroup acting on f ∈ Bb(D). Then, for 3 ∈ TxD, t ≥ 0 and
k ∈ C1

b([0,∞);R),

(HessPtf )(3, 3)(x) = −E
[
f (Xt(x))

∫ t

0
⟨W̃k

s (3, k̇(s)3), //s dBs⟩

]
+ E

f (Xt(x))

(∫ t

0
⟨Q̃s(k̇(s)3), //sdBs⟩

)2

−

∫ t

0
|Q̃s(k̇(s)3)|2 ds

 .
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Hessian estimate for Neumann semigroup

Corollary 6 [Ch.-Thalmaier-Wang, 2022]
We keep the assumptions of Theorem 5. Assume that Ric ≥ −K0, |R| ≤ K1
and |d∗R + ∇Ric| ≤ K2 on D, and −∇N ≥ −σ1, |∇2N + R(N)| < σ2 on the
boundary ∂D. Then, for (ϕ, λ) ∈ EigN(D),

∥Hess ϕ∥∞ ≤e( 1
2λ+K+0 )t

(
K1 +

2
t
+

K2
√

t
2

)
E[eσ1lt ]∥ϕ∥∞

+
σ2

2
√

t
e( 1

2λ+K+0 )tE
[
eσ1lt

]1/2
E [∫ t

0
e

1
2σ1ls dls

]21/2

∥ϕ∥∞.
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Estimate of the local time

Lemma 7
Suppose that h ∈ C∞(D) such that h ≥ 1 and N log h ≥ 1. For α > 0 let

Kh,α = sup{−∆ log h + α|∇ log h|2}.

Then

E[eαlt/2] ≤ ∥h∥α∞ exp
(
α

2
Kh,αt

)
.
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Thank you!
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